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Abstract—Mammogram mass detection is crucial for diagnosing and preventing the breast cancers in clinical practice. The
complementary effect of multi-view mammogram images provides valuable information about the breast anatomical prior structure and
is of great significance in digital mammography interpretation. However, unlike radiologists who can utilize the natural reasoning ability
to identify masses based on multiple mammographic views, how to endow the existing object detection models with the capability of
multi-view reasoning is vital for decision-making in clinical diagnosis but remains the boundary to explore. In this paper, we propose an
Anatomy-aware Graph convolutional Network (AGN), which is tailored for mammogram mass detection and endows existing detection
methods with multi-view reasoning ability. The proposed AGN consists of three steps. Firstly, we introduce a Bipartite Graph
convolutional Network (BGN) to model the intrinsic geometric and semantic relations of ipsilateral views. Secondly, considering that the
visual asymmetry of bilateral views is widely adopted in clinical practice to assist the diagnosis of breast lesions, we propose an
Inception Graph convolutional Network (IGN) to model the structural similarities of bilateral views. Finally, based on the constructed
graphs, the multi-view information is propagated through nodes methodically, which equips the features learned from the examined
view with multi-view reasoning ability. Experiments on two standard benchmarks reveal that AGN significantly exceeds the
state-of-the-art performance. Visualization results show that AGN provides interpretable visual cues for clinical diagnosis.

Index Terms—Detection, graph convolutional network, reasoning, multi-view, mammogram.

F

1 INTRODUCTION

B REAST cancer, which has the highest incidence and
mortality rates among women [1], is one of the leading

cause of cancer deaths worldwide. Screening mammog-
raphy has demonstrated strong efficacy in reducing the
breast cancer mortality especially at the early stage [2].
The detection of masses based on mammograms is a key
step for diagnosing breast cancer in clinical practice. Never-
theless, masses can be partially obscured by high-intensity
compacted glands especially in dense breasts, which im-
poses great challenges on radiologists and computer-aided
detection (CAD) systems for the detection of mass from
mammography. To better assist clinical diagnosis, mammo-
gram mass detection is typically based on multiple views
on both breasts. Specifically, as shown in Figure 1, a cranio-
caudal (CC) view (i.e., a top-down view of the breast) and
a mediolateral oblique (MLO) view (i.e., a side view of the
breast taken at a certain angle) are taken for both breasts.
Comparing ipsilateral views (i.e. both CC and MLO views
of the same breast) helps to analyze 3D structure of masses.
Besides, since bilateral views (i.e., same view of both breasts)
usually share a similar breast structure, asymmetric regions
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of bilateral views are more likely to be masses (Detailed defi-
nitions with respect to mammogram views will be described
in Section 3). Therefore, the complementary effect of multi-
view mammogram images is capable of providing valuable
information regarding the breast anatomical prior structure,
which is of great significance in digital mammography
interpretation.

In terms of exploiting the relations of multi-view images,
prior works can be roughly divided into two categories:
ipsilateral view based and bilateral view based methods. For
the ipsilateral view based modeling, an intuitive approach
is to leverage the relation networks [3], [4] to model the ip-
silateral inter-image non-local relations. For example, CVR-
RCNN [5] cascades a relation module [3] to the second stage
of Faster RCNN [6] to model the inter-proposal relations
between CC and MLO views. However, compared to radi-
ologists who can assist reasoning with domain knowledge,
relation learning lacks clear constraints, i.e., the ipsilateral
geometric and semantic relations are not explicitly taken
into consideration. Thus, the learned relations may be in-
capable of precisely modeling the ipsilateral relations. In
addition, it should be noted that such relation module relies,
to a large extent, on the quality of region proposals at the
first stage. When there exists the situation of severe gland
occlusions, the performance will drop significantly. For the
bilateral views [7], a recent work, i.e., CBN [8], proposes
to fuse features of bilateral views with added tolerance of
geometric distortions. However, like CVR-RCNN, CBN is
based on RPN proposals [6], which also suffers from the
proposal-missing problem.

During the exploration, we notice that radiologists can
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Fig. 1. An illustration of the relation among mammography views. Standard mammography screening takes a CC view and an MLO view for each
breast. Figure (a)-(c) represent the examined view (i.e., CC view of the right breast), the contralateral view (i.e., CC view of the left breast) and the
auxiliary view (i.e., MLO view of the right breast) of a specific instance. The examined view represents the view where the detection is performed.
Figure (a) and (b) form a bilateral pair, and are roughly symmetric since they have similar gland background, breast shape and breast size. Figure
(a) and (c) form an ipsilateral pair, and provide complementary information to represent the 3D anatomical structure. Patch (1) and (3) in the
corresponding images refer to a mass lesion instance, while Patch (2) locates similarly as Patch (1) in the contralateral image. Figure (d) offers
zoom-in versions of these patches. Figure (e) stands for an ideal projection model of mammography. We can see that the CC view is a top-down
view of the breast, while the MLO view is a side view taken at a certain angle along the pectoral muscle plane.

explicitly utilize the natural reasoning ability to identify
masses by observing different mammographic views. The
diagnosis flow adopted by the radiologists consists of the
following three steps. (1) Determine the suspicious regions
based on the examined view. (2) Search for compatible
regions in the auxiliary view on the basis of appearances
and locations, and contrast the corresponding regions based
on the bilateral pair (i.e. examined view and contralateral
view). (3) Make a diagnosis with respect to the suspicious
regions according to two visual observations: (i) reasonable
correspondences are found in the auxiliary view; and (ii) the
regions in the bilateral view are symmetric. While the multi-
view region-based reasoning procedure plays a key role for
mammogram mass detection, most existing methods [8],
[9], [10], [11], [12], [13], [14], [15], [16] focus on improving
the detection accuracy in a single view. How to endow
the existing object detection models with the capability of
multi-view reasoning is vital for decision-making in clinical
diagnosis but remains the boundary to explore.

Inspired by the aforementioned discussions, in this pa-
per, we delve into the multi-view reasoning problem and
propose an Anatomy-aware Graph convolutional Network
(AGN), which is tailored for mammogram mass detection
and endows detection models with multi-view reasoning
ability. By jointly reasoning the correspondence relations
among multiple mammogram views, AGN learns the intact
multi-view information in an end-to-end manner during
training. The input of AGN is the extracted features of multi-
view images from the backbone network, and the output is
the enhanced features of the examined view. As a general
method, AGN can be easily plugged into any modern object
detection frameworks [6], [17], [18] without modifying their
original network architectures.

To be specific, the proposed AGN is comprised of
the following three steps. Firstly, we introduce a novel

Bipartite Graph convolutional Network (BGN) to model
the intrinsic geometric and semantic relations of ipsilateral
views. The construction of bipartite graph nodes aims at
modeling the region-level correspondences between views.
Each node represents a region with relatively consistent
locations across breast instance. The bipartite graph edges
are constructed to characterize the relation between nodes
across views in two aspects: geometric constraints and ap-
pearance similarities. Secondly, considering that the visual
asymmetry of bilateral views is widely adopted in clin-
ical practice to assist the diagnosis of breast lesions [7],
we propose an Inception Graph convolutional Network
(IGN) to model the structural similarities of bilateral views.
IGN targets on contrasting the bilateral mammogram views
based on the assumption that asymmetric regions are more
likely to be masses. Technically, it forms multi-branch graph
connections between each node and its nearest neighbors,
which strengthens the robustness of learned representa-
tions against inherent geometric distortions and forms an
Inception-like structure [19]. Finally, based on the con-
structed bipartite and inception graphs, the multi-view in-
formation is propagated through nodes methodically after
several layers of graph convolutions, which equips the
features from the examined view with multi-view reasoning
ability.

Compared to prior works that leverage weak or even
no reasoning constraints, our AGN explicitly learns a cus-
tomized multi-view reasoning model from both ipsilateral
and bilateral views. In addition, the proposed BGN and IGN
enhance the backbone features before the region proposal
step, which helps to mitigate the proposal-missing problem.
We evaluate the effectiveness of the proposed AGN on
two mammogram mass detection benchmarks, i.e., a public
dataset (DDSM [20]) and a multi-center in-house dataset.
Our experiments reveal that the proposed algorithm signif-
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icantly exceeds state-of-the-art performance on benchmark
datasets. Moreover, visualization results demonstrate that
the proposed AGN provides reasonable and interpretable
visual cues for clinical diagnosis.

The contributions of our work are summarized as fol-
lows: Firstly, to the best of our knowledge, this is the
first work that explicitly exploits the multi-view graphical
correspondence for mammogram mass detection. Secondly,
we propose a bipartite graph convolutional network, which
is capable of performing reasoning about ipsilateral corre-
spondences and modeling both geometric constraints and
visual similarities between ipsilateral views. Lastly, we de-
sign an inception graph convolutional network, which mod-
els the structural similarities between bilateral views and
enhances the robustness of learned representations relying
on a priori that asymmetric regions are more likely to be
masses.

This paper substantially extends our conference pa-
per [21] from four major aspects. (1) Besides utilizing ip-
silateral views [21], our AGN further considers the comple-
mentary effect of bilateral views to learn intact multi-view
information of mammogram, which helps to make more
comprehensive and precise clinical decisions. Specifically,
we propose a novel inception graph convolutional network
for modeling the structural similarities of bilateral views. (2)
We enhance the mechanism of correspondence reasoning
to fit the multi-view modeling scenario. (3) We conduct
more experiments and ablation studies with respect to the
enhanced network architecture, and include updated exper-
imental results on a larger in-house multi-center dataset. (4)
We provide more complete introduction and analysis for the
proposed multi-view correspondence reasoning network, as
well as more elaborated implementation details.

The rest of the paper is organized as follows: Section 2
gives a brief review of related works. Section 3 illustrates
the preliminaries of mammogram views. Section 4 demon-
strates the details of the proposed AGN. Experimental re-
sults and feature visualization are described in Section 5.
Section 6 draws the conclusion.

2 RELATED WORK

2.1 Mammogram Mass Detection
Existing works on mammogram mass detection [22] can be
coarsely classified into two categories: traditional and deep-
learning-based approaches. Traditional approaches rely on
the handcrafted features to identify masses from mammo-
gram images [23], [24]. The pipeline of these approaches
usually includes two stages. The first stage, which aims
at extracting region proposals to recall most masses, is to
generate candidates. Based on the assumption that mass
regions are brighter than background, region proposals
are obtained using thresholding, clustering, bilateral image
subtraction, etc [25], [26], [27], [28]. To further enlarge the
intensity difference between mass regions and background,
pre-processing methods are introduced, such as histogram
equalization, exponent functions, etc. The second stage is
to reduce the false positives. Numerous approaches [24],
[29] resort to the handcrafted patterns to represent mass
boundaries, textures or shapes. The traditional approaches
suffer from the following limitations. Firstly, traditional

approaches, which are based on handcrafted features, have
weak representation ability and cannot be end-to-end train-
able. Secondly, the generated candidates are very likely to
contain many false positives, increasing the difficulty of
optimizing the classifier in the second stage. Lastly, the
second stage does not contain the localization step. Thus,
the predicted locations of masses may largely deviate from
their bounding boxes.

In the past decade, the renaissance in deep learning
has greatly promoted the development of medical image
computing [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39]. Mass detection has achieved remarkable success by
virtue of deep convolutional neural networks [8], [9], [10].
A typical solution is to apply deep convolutional networks
for reducing false positives [11], [12], [13]. However, these
models cannot be end-to-end trainable, and thus result in in-
ferior performance. To tackle this issue, researchers attempt
to leverage the off-the-shelf modern object detectors, such
as Faster R-CNN [6], FPN [40], Mask R-CNN [17], for the
mammogram mass detection [14], [15], [16]. Despite their
general efficacy, the complementary of multi-view mammo-
gram images are not taken into considered. Ma et al. [5]
propose to model the ipsilateral property and introduce a
relation module [3] to the Faster RCNN [6], aiming to learn
ipsilateral inter-proposal relations. However, the relation
learning lacks clear constraints, i.e., the ipsilateral geometric
and semantic relations are not explicitly considered. Thus,
the learned relations may be incapable of precisely modeling
the between-image correlations. In addition, such relation
module heavily relies on the quality of region proposals at
the first stage. When encountering the situation of severe
gland occlusions, the detection performance will drop sig-
nificantly. By explicitly leveraging the domain knowledge
of specific image modalities, AGN has powerful multi-
view reasoning ability, which significantly improves the
localization ability of backbone features. MommiNet [41] is
a concurrent work that proposes to simultaneously perform
end-to-end bilateral and ipsilateral analysis of mammogram
images. However, they do not consider the graphical corre-
spondence among different mammographic views, which is
important for the success of multi-view reasoning.

2.2 Visual Reasoning based on Graph Convolutional
Network

Visual reasoning attempts to merge distinct information
(interactions) among objects (scenes), and has been exten-
sively explored in computer vision problems, e.g., image
classification [42], [43], object detection [44], [45], semantic
segmentation [46] and other visual understanding tasks [47],
[48], [49], [50], [51]. The typical paradigm of visual reasoning
is to incorporate the object relations or attributes into differ-
ent vision tasks [3], [42], [52]. For example, Akata et al. [52]
solve the attribute-based image classification problem by
regarding it as a problem of reasoning in the attribute-
embedded space.

Recently, Graph Convolutional Network (GCN) [53] has
been introduced for visual reasoning tasks due to its rep-
resentation power for non-Euclidean data and reasoning
power from domain knowledge. Li et al. [46] propose a set of
graph convolutional units to learning graph representations
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from 2D visual data. However, the information propagation
during the representation learning process will inevitably
introduce noisy signals since all semantic correspondences
are jointly considered. Moreover, the reasoning procedure is
uncontrolled and implicit, which impairs the performance
and the interpretability. Gao et al. [54] strengthen the ex-
pressive power of learned features for the visual tracking
task by introducing a spatial-temporal GCN. However, the
construction of graph nodes is based on the uniform grids,
which are very sensitive to the variations of object scales,
image shapes, geometric structures, etc. Considering the
semantic dependencies among different objects, Xu et al. [55]
propose to exploit the human commonsense knowledge to
reason with a class-to-class prior. However, the constructed
knowledge graph remains relatively fixed, and thus may
fail to adapt to the more complex scenarios. In addition, it
is incapable of extending to the single-category detection
problems (e.g., mass detection). The reasoning procedure
that radiologists read mammograms provides more explicit
guidance, which motivates us to design a more customized
algorithm with domain knowledge.

2.3 Multi-view Visual Recognition

Representing 3D object is one of the most fundamental
problems in visual understanding [56], [57] and stereo vi-
sion [58], [59], [60], [61], [62]. Multi-view based approaches
represent the 3D object as a collection of 2D views [63],
[64]. Typically, they first conduct image-based classification
on each individual view, and then aggregate the multi-
view features for 3D representation. Feng et al. [57] propose
a group-view CNN for hierarchical correlation modeling
from multiple views. Yang et al. [65] propose a relation
network which is capable of modeling region-to-region and
view-to-view relationships from different viewpoints. For
3D medical images, such as computed tomography (CT)
and magnetic resonance imaging (MRI), utilizing 2D image
features projected from different views can lead to superior
performance [66], [67]. For instance, Setio et al. [66] sample
multiple views from the 3D CT image, and then cascade
different classifiers trained on each individual view to boost
the nodule classification performance.

Unlike multi-view based approaches in general com-
puter vision [62] and 3D medical image analysis [66], [67],
mammographic views have a differentiated imaging pro-
cess, which requires us to design customized algorithms
for analysis. Mammographic views are captured as the total
absorption of all substances along the projection ray, which
makes it impossible to decomposite the internal structures.
Ipsilateral views are taken along different directions of the
breasts, which provides richer information for representing
the 3D structure of breast. Meanwhile, bilateral views have
similar breast structure, and thus the asymmetric regions
between views are more likely to be masses. In a nutshell,
mammographic views owns more explicit correspondences,
which motivates us to develop customized reasoning mech-
anisms. We note that the explicit correspondences are also be
explored in stereo vision methods [59], [60], [61], [62], where
they align key points via leveraging the explicit correspon-
dences among calibrated cameras. In contrast to stereo vi-
sion, we can not obtain precisely matched correspondences

between different views due to the existence of standard
mammography screening protocols [68]. Thus, how utilize
the fuzzy correspondences to enhance the expressive power
of backbone features remains an open question.

3 PRELIMINARY: MAMMOGRAPHIC VIEWS

In this section, we provide the details of the mammographic
screening mechanism. As a special type of 2D radiography,
digital mammographic images are captured as the total
absorption of all substances along the projection ray. There-
fore, using only a single view of mammographic images
is insufficient to represent the breast internal structure. In
standard mammographic screening, X-ray images are taken
for both two breasts. For each breast, two mammographic
views (i.e., CC view and MLO view) are taken by com-
pressing the breast at a near orthogonal plane. Specifically,
CC view is a top-down view while MLO view is a side
view taken at a certain angle. Comparing ipsilateral views
(i.e., both CC and MLO views of the same breast) helps to
analyze the 3D structures of masses. Contrasting bilateral
views (i.e., a specific view of both breasts) helps to extract
suspicious mass lesions since bilateral views of breasts are
approximately symmetric.

In this paper, a set of multi-view images are defined
as input (illustrated in Figure 1), including an examined
view (i.e., the view where the detection is performed), an
auxiliary view (i.e., another view of the same breast) and a
contralateral view (i.e., the view of opposite side of breast).
We respectively utilize one of the mammogram images as
the examined view, and the rest two views are defined as
the auxiliary and contralateral views.

4 METHODOLOGY

4.1 Overview
The objective of AGN is to endow the mammogram mass
detection framework with multi-view correspondence rea-
soning ability. By distilling multi-view information from the
input multi-view mammogram images, AGN outputs the
enhanced feature representations of the examined view for
further detection. The overall architecture is shown in Fig-
ure 2, which consists of the following steps. (1) For the pur-
pose of modeling the region-based reasoning procedure, the
graph nodes are embedded into breasts, where each node
represents the features of regions with relatively consistent
locations in breasts. Then, bipartite graph convolutional net-
work is introduced to model the geometric constraints and
appearance similarities of nodes between ipsilateral views.
(2) Inception graph convolutional network is designed to
learn structural similarities of bilateral views with an added
tolerance of geometric distortions. (3) Correspondence rea-
soning enhancement, which is based on the two pre-defined
graph convolutional networks, is proposed to enhance the
representation power of features. Based on the above steps,
after information propagated through nodes, each node
can not only be aware of the ipsilateral correspondences,
but also learn the contrastive representations from bilateral
views. It is noteworthy that the node representations are
mapped to spatial visual domain reversely, which explicitly
endows the spatial features with reasoning ability. In the
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Fig. 2. The pipeline of the proposed AGN. AGN takes multi-view backbone features as inputs, and outputs enhanced features of the examined view
for further prediction. First, bipartite graph convolutional network performs reasoning across ipsilateral views end outputs auxiliary representations of
mass lesion 3D structure. Second, inception graph convolutional network contrasts bilateral views and produces attention maps on the suspicious
asymmetric areas. Finally, correspondence reasoning enhancement based on the defined two graphs is conducted to enhance the backbone
features of the examined view for further detection.

end, we fuse the enhanced features and the original back-
bone features for further proposals.

Specifically, we are given a set of 2D feature maps
Fe, Fa, Fc ∈ RHW×C extracted from the examined view
(simplified as e), the auxiliary view (simplified as a) and
the contralateral view (simplified as c), and H,W and
C represent the height, width and channel of the feature
maps. le, la, lc ∈ {CC,MLO} are defined as view types.
We guarantee that le 6= la and le = lc. As formulated in
Equation 1, AGN learns a function f , parameterized by the
bipartite graph GB and the inception graph GI .

Y = f(Fe, Fa, Fc;GB ,GI) (1)

4.2 Graph Nodes

Graph nodes are introduced to denote the region-level
correspondences in breasts with relatively consistent loca-
tions across different breast instances. Technically, we define
graph nodes by considering two fundamental questions, i.e.,
“where to locate” and “ what to represent”.

We introduce the concept of pseudo landmarks, which
preserve relative consistent locations in breasts, to address
the first question. For the second question, we note that

the graph node mapping can produce node representations
from spatial visual features. In the following parts, we
provide the technical details.

4.2.1 Pseudo Landmarks
Landmarks represents points in a shape object, where cor-
respondences between and within the populations of the
object are preserved [69]. Unfortunately, there are no spe-
cialized landmarks for breasts, which inspires us to define
pseudo landmarks based on prior knowledge.

The pseudo landmarks are expected to possess the fol-
lowing properties: I. Each pseudo landmark stands for a
region with relatively consistent locations in breasts; II. Dif-
ferent pseudo landmarks should stand for distinct regions in
breasts; III. Combining all pseudo landmarks are expected
to cover the whole breast.

An intuitive approach is to regard uniform grids of the
image as landmarks. However, property I. is not satisfied
since the uniform grids are sensitive to the variations of
image scale, geometric structures, etc. As demonstrated in
Figure 1, the design principle of pseudo landmarks is based
on a key observation: there exist clear geometric correspon-
dences between CC and MLO views of standard mammog-
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(a) CC View (b) MLO View (c) Mapping Cell

Fig. 3. Illustration of pseudo landmarks and bipartite graph node map-
ping. (a)-(b) draw pseudo landmarks and the matched bounding boxes
on CC and MLO views respectively. (c) illustrates how bipartite node
mapping works when k = 1. Each mapping cell denotes the represen-
tative region of the node in the CC view.

raphy screening. Ideally, a point in CC view approximately
corresponds to a line in MLO view, which is parallel to the
projected pectoral muscle plane.

As illustrated in Figure 3, in order to embed the pseudo
landmarks, we first insert a set of equidistant parallel lines
between the nipple and pectoral muscle line (projected by
the pectoral muscle plane). Based on the intersection be-
tween parallel lines and breast contour, we uniformly insert
points between two intersection points. After that, all the
points are re-ordered based on the intersections and further
defined as pseudo landmarks. Similarly, we define pseudo
landmarks in pectoral muscle areas for MLO view. By doing
so, we can obtain a set of pseudo landmarks for each view.

4.2.2 Graph Node Mapping
Graph node mapping targets on projecting spatial visual
features F ∈ RHW×C to the node domain. Note that the
features of each node are region-level features that represent
a certain region in breasts.

The node mapping denotes the relation between a graph
node and all pixels in the corresponding region. Formally,
we design kNN (k Nearest Neighbor) forward mapping φk
with its auxiliary matrix A for node feature representations.
Each node is associated to an irregular region, satisfying the
property that for any pixel in this region, the node is one of
its k nearest nodes. φk performs region-level feature pooling
within the regions corresponding to the graph nodes. The
formulas are defined as follows:

φk(F,V) = (Qf )TF, (2)

Qf = A(Λf )−1, (3)

Aij =

{
1, if j th node is kNN of i th pixel.
0, otherwise.

(4)

where V denotes the node set corresponding to spatial
feature F ∈ RHW×C , A ∈ RHW×|V| is the auxiliary matrix
that assigns spatial features to top-k nearest graph nodes,

Λf ∈ R|V|×|V| (Λf
jj =

HW∑
i=1

Aij) is a diagonal matrix, and

Qf ∈ RHW×|V| (a normalized form of A) denotes the
forward mapping matrix.

Compared to fixed-grid assign methods [54], the node
representations in our AGN are more robust to the varia-
tions of image scales, geometric structures, etc. The justi-
fication is that φk adaptively chooses representative region
according to the relations among node locations. In addition,
the proposed mapping mechanism has an explicit physical
meaning, which has the merit of better visual interpretabil-
ity. In particular, as show in figure 3 (c), the mapping
degenerates to Voronoi grids [70] when k = 1.

4.3 Bipartite Graph Convolutional Network (BGN)

BGN learns to model ipsilateral relations among correspon-
dences. BGN is characterized as GB = (VCC ,VMLO, EB),
where VCC and VMLO represent the bipartite graph node
sets constructed from CC view and MLO view respectively.
EB denotes the bipartite graph edge set. Each edge in EB
connects a node in VCC to the corresponding one in VMLO ,
leading to a bipartite graph structure.

To obtain the feature representations of bipartite graph
node, we resort to the kNN forward mapping described in
Section 4.2.2. Formally, the bipartite graph node representa-
tions are defined as follows:

XB
e = φk(Fe,Vle), (5)

XB
a = φk(Fa,Vla). (6)

Here, for the sake of simplicity, we denote XCC ∈
{XB

e , X
B
a } as node features for CC view and XMLO ∈

{XB
e , X

B
a } for MLO view.

To obtain bipartite graph edge representations, we start
by rethinking a fundamental question: what is the underly-
ing relations between nodes? Given a mass which is located
at one certain node in the examined view, it is clear that
different nodes in the auxiliary view will have differentiated
probabilities for representing the given mass. Motivated
by this, we regularize the relation from two aspects, i.e.,
geometric constraints and appearance similarities. The two
aspects characterize the inherent constraints resulted from
mammogram screening mechanism and visual similarities
between nodes, respectively.

Formally, bipartite graph edge is denoted as an ad-
jacency matrix H ∈ R|VCC|×|VMLO|, which consists of a
geometric graph Hg ∈ R|VCC |×|VMLO| and a semantic graph
Hs ∈ R|VCC |×|VMLO|. The geometric graph is a global
prior graph, which represents the geometric constraints
across views. The semantic graph is an instance depen-
dent graph, which characterizes the semantic similarities
between nodes. The two graphs jointly regularize the ip-
silateral information propagation. Eq. (7) demonstrates the
relations of these two matrices,

H = Hg ◦Hs (7)

where ◦ denotes the element-wise dot.
In the following subsections, we show the details of how

to regularize the relations among correspondences.
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4.3.1 Geometric Relation Learning
In this part, we explicitly model the geometric constraints.
Even though the CC and MLO views own standard camera
pose, it is difficult to define the precise geometric correspon-
dence due to the tissue deformation and the lack of visual
cues. To solve this issue, we resort to use masses as visual
cues for modeling the geometric correspondence. Each edge
in the geometric graph stands for the correlation of the
linked nodes (i.e., the same mass instance from different
views). In order to estimate the correlation, for each mass, if
a node is the closest to the center of bounding box, this node
will be selected to represent the mass. By doing so, we are
capable of linking the nodes that stands for the same mass
instance from different views (e.g., 4th node in CC view and
3th node in MLO view in Figure 3).

The construction of geometric graph Hg consists of the
following two steps. (1) We construct a frequent statistics
matrix ε for masses. If a node is the closest one to the center
of the bounding box of a mass, this node is chosen to rep-
resent the mass. By doing so, we are capable of linking the
nodes that stand for the same mass instance from different
views. We traverse all labeled masses in the training set and
obtain the frequent statistics matrix ε ∈ R|VCC |×|VMLO|. (2)
To obtain Hg , we perform an augmented form of column-
row normalization [55]:

Hg
ij =

εij√
Di·D·j

(8)

where Di· =
∑
k=1

εik and D·j =
∑
k=1

εkj .

4.3.2 Semantic Relation Learning
Whilst the geometric graph characterize the holistic geomet-
ric correlations, it still inevitably introduces noises during
the reasoning procedure, and thus is hard to find exact
correspondence pairs across views. In addition, we note
that the appearance similarities between different views is a
significant characteristic of mass lesions. Inspired by this, we
introduce the semantic graph to learn the semantic relation
between nodes, which is helpful for mitigating the negative
influence of the noisy relations.

An intuitive approach to define the semantic similarities
between nodes is to measure them by cosine similarity or
inner product [71], [72]. However, the relations between
nodes include the backgrounds, and their features may also
be enhanced. To tackle this issue, we relax the weights, and
allow the module to learn its own similarity as follows:

Hs
ij = σ([(XCC

i )T , (XMLO
j )T ]ws), (9)

where XCC
i , XMLO

j ∈ RC respectively denote the ith and
jth node features of CC and MLO views, ws ∈ R2C

stands for the fusion parameter, and σ denotes the sigmoid
activation function.

4.4 Inception Graph Convolutional Network (IGN)
Based on the assumption that bilateral mammogram views
share a similar breast structure and asymmetric regions are
more likely to be suspicious regions, we propose the IGN
to learn to contrast bilateral mammogram views. IGN links
nodes with compatible locations from bilateral views and
predicts attention values for regions in the examined view.

IGN is characterized as GI = (Ve ∪ Vc, EI), where Ve,Vc
indicate node sets constructed from the examined view and
the contralateral view respectively. Since bilateral views
have the same view type (i.e., le = lc), we guarantee that
|Ve| = |Vc|. For simplicity, we assume that n = |Ve| = |Vc|.

To obtain node feature representations for IGN, we adopt
kNN forward mapping similarly. Formally, representations
corresponding to the examined view and the contralateral
view are defined as:

XI
e = φk(Fa,Ve) (10)

XI
c = φk(Fc,Vc) (11)

Then, the node representation of IGN can be defined as:

XI = [(XI
e )T , (XI

c )T ]T (12)

To obtain edge representation of IGN, we characterize

the edge set EI as an adjacency matrix Ĵ =

(
M J
JT MT

)
,

which contains two components, i.e., M ∈ Rn×n and J ∈
Rn×n. Specifically, M characterizes the relations of nodes
within the same view, while J characterizes the relations of
nodes across different views.

We set M to 0, indicating that there are no intra-
connections within the view. However, determining the
attention values of a certain view not only requires its con-
tralateral information (i.e. J ) but also the view information
itself. Thus, we add self-loop for each node of the graph.
Specifically, we set M = In.

As for the definition of J , it is intuitive to set J = In
which assumes that only nodes with the same location
in bilateral views are linked. However, the bilateral views
may not be aligned perfectly due to the inherent geometric
distortions. To tolerate the distortions, we reformulate J as
Js which links each node to its top-s nearest neighbors (NN)
in the contralateral view. Js provides larger visual context
which helps to increase the tolerance for the distortions.
Note that each distinct value of s can induce a distinct
set of cross-view edges and their corresponding cross-view
adjacency matrix is denoted as Js.

The set of cross-view edges corresponding to Js can
be regarded as a single branch of graph linkages. Instead
of using a single branch, we adopt multiple branches of
graph linkages, each corresponding to a distinct cross-view
adjacency matrices. This kind of GCN can provide stronger
representation abilities and form an Inception-like structure
[19]. Specifically, supposing that IGN has two different
branches s1, s2 ∈ N∗, the induced corresponding aug-
mented adjacency matrices are denoted as Ĵs1, Ĵs2. When
performing graph convolutions, both Ĵs1 and Ĵs2 affect
information propagation. Details of convolution operation
will be described in Section 4.5.2.

4.5 Correspondence Reasoning Enhancement

Correspondence reasoning enhancement, which is based on
the defined bipartite graph GB and the inception graph GI , is
developed to fully explore multi-view reasoning procedure
for enhancing the customized features. It consists of the
following steps. (1) Augment bipartite graph convolution,
making it adapt to the modern graph convolutional manner;
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(2) Design inception graph convolution with multi-branch
connections among nodes; (3) Map node representations
to spatial domain reversely after several layers of graph
convolutions; and (4) Fuse the original backbone features
with the graph representations learned from BGN and IGN
to enhance the expressive power of final representations. We
will describe the details in the following subsections.

4.5.1 Bipartite Graph Convolution
To adapt the modern GCN [54], [73], we provide the aug-
mented form of the bipartite graph:

XB = [(XCC)T , (XMLO)T ]T , (13)

HB =

(
0 H
HT 0

)
, (14)

where XB ∈ R|VCC∪VMLO|×C denotes the augmented
form of the bipartite graph nodes, and HB ∈
R|VCC∪VMLO|×|VCC∪VMLO| is the augmented form of the
adjacency matrix.

We follow the common practice [54] to define graph con-
volution. An iteration of graph convolution layer is defined
in Equation 15, where WB ∈ RC×C and σ indicate the
convolution parameters and sigmoid activation function. To
this end, we are able to stack multiple layers to form the the
graph convolutional network.

ZB = σ(HBXBWB) (15)

4.5.2 Inception Graph Convolution
To achieve inception graph convolution with multi-branch
linkage among nodes, we generalize standard graph convo-
lution operations. We give the formulation of an iteration of
the inception graph convolutional operation in Equation 16.
Feature transformations of multiple branches are conducted
independently, and then the transformed multi-branch fea-
tures are aggregated. For simplicity, the equation contains
only two branches. It is intuitive to reformulate it to adapt
to multi-branch settings.

ZI = σ

((
Ĵs1 Ĵs2

)(XI 0
0 XI

)(
W I

1

W I
2

))
, (16)

where W I
1 ,W

I
2 ∈ RC×C indicate parameters of the layer.

4.5.3 kNN Reverse Mapping
In order to enhance the spatial features, we introduce a kNN
reverse mapping function ψk to map the graph node fea-
tures to the spatial domain. Following the design principle
of the kNN forward mapping (cf. Section 4.2.2), we keep the
same number (k) of nearest neighbors. ψk is defined as :

ψk(Z,Ve) = Qr[Z]e, (17)

Qr = (Λr)−1A, (18)

where Z denotes the node presentations after graph con-
volutions, Ve stands for the node set from the examined
view, A ∈ RHW×|Ve|, which is correspond to Ve, is defined
by following Equation 4, [·]e denotes an indexing operator
which chooses nodes in the examined view from all nodes,

Λr ∈ RHW×HW represents a diagonal matrix, Λr
ii =

|Ve|∑
j=1

Aij ,

and Qr ∈ RHW×|Ve| denotes the reverse mapping matrix
which is the normalized form of A.

TABLE 1
Performance on DDSM dataset(%).

Method R@t
Campanini et at. [74] 80@1.1

Eltonsy et at. [75] 92@5.4, 88@2.4, 81@0.6
Sampat et at. [76] 88@2.7, 85@1.5, 80@1.0
Faster RCNN [5] 85@2.1, 75@1.8, 73@1.2
CVR-RCNN [5] 92@4.4, 88@1.9, 85@1.2

AG-RCNN 96@4.4, 92@1.9, 90@1.2

TABLE 2
Performance on DDSM dataset(%).

Method R@0.5 R@1.0 R@2.0 R@3.0 R@4.0
Faster RCNN, FPN 75.3 81.5 87.3 89.8 91.4

Faster RCNN, FPN, DCN 75.7 82.5 88.4 90.1 91.4
Mask RCNN, FPN 76.0 82.5 88.7 90.8 91.4

Mask RCNN, FPN, DCN 76.7 83.9 89.4 91.4 91.8
BG-RCNN [21] 79.5 86.6 91.8 92.5 94.5

AG-RCNN 82.0 89.0 92.1 93.8 95.5

4.5.4 Feature fusion
Feature fusion procedure includes the following steps. We
first map the features from the auxiliary view to spatial
domain using ψk. After that, FB and Fe are aligned to
the same coordinate space, which helps to fuse them more
effectively:

FB = ψk(ZB ,Ve) (19)

Then, we predict attention values for regions in the exam-
ined view induced by inception graph convolutions.

FI = ψk(ZI ,Ve), (20)

F̂I = σ(FIwI), (21)

where wI ∈ RC represents the parameter, and F̂I refers
to the spatial attention map. Finally, we enhance the fea-
tures based on the processed feature triple, which has been
aligned in the same spatial coordinate space:

Y = [F̂I · Fe, FB ]WT
f , (22)

where · indicates spatial-wise dot which broadcasts along
channel axis, Wf ∈ RC×2C represents the fusion parameter.

5 EXPERIMENTS

5.1 Implementation Details
In experiments, the mammogram images are segmented by
OTSU [77], and we use the foreground regions as the input.
In order to keep the same spatial resolution among different
view of images, each view of input image is resized to
same size of the examined image. We leverage the Hough
transform to detect the pectoral muscle line and nipple in
three steps for pseudo landmark embedding. First, points
potentially lying on the pectoral muscle line are extracted
with the Canny edge detector. Then, these extracted points
are mapped into the parameter space. Finally, noisy points
in the parameter space are removed according to the prior
location of the pectoral muscle line, and the optimal point
in the parameter space is identified for the pectoral muscle
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line. The point on the breast contour with the largest dis-
tance to the detected pectoral muscle line is further located
as the nipple. We apply several specific data augmentation
methods, such as random flipping, random cropping, and
multi-scaling, to prevent over-fitting during the training
stage.

The proposed AGN is integrated into Mask RCNN [17]
with ResNet-50 [78] architecture, and we term the full mam-
mogram mass detection framework as AG-RCNN hereafter.
The parameters of ResNet-50 are fine-tuned from the model
pre-trained on ImageNet. The loss function follows the same
definition as Mask RCNN [17], containing three terms: clas-
sification loss, regression loss, and segmentation loss. The
FPN anchors span 5 scales and 3 aspect ratios [40]. To adapt
to modern FPN [40] network structure, AGN enhances each
level of feature pyramid with shared parameters, since node
representations are invariant to feature map scales.

Our experiments are implemented by the PyTorch deep
learning framework [32]. We utlize stochastic gradient de-
scent (SGD) for the training with a learning rate 0.02, weight
decay 10−4, momentum 0.9 and nesterov set True. The
training process takes 30 epochs in all. Regarding the BGN,
we keep the same number of nearest neighbors k for both
φk and ψk for bipartite node mapping and reverse mapping.
As for IGN, the number of nearest neighbors k for both φk
and ψk is set to 1 for keeping higher spatial resolutions.

5.2 Datasets
We perform experiments on both a public dataset DDSM
[20] and an in-house dataset. Note that we do not choose
other public datasets (such as INBreast [79] , MIAS [80]).
The justification is that the sample size of these datasets is
insufficient to train a detection model.

DDSM dataset. DDSM dataset includes 2620
mammography cases, and most cases contain two views of
images for both breasts. Following previous practices [5],
[74], [75], [76], the DDSM dataset is divided to 1897 cases
for training, 211 cases for validation and 512 cases for
testing.

In-house dataset. The in-house dataset includes 10,000
cases, which are collected from four different vendors: IMS
s.r.l., Siemens, Hologic, and GE Healthcare. Each case con-
tains a CC view and an MLO view for each breast, and thus
there are 40,000 images in all. The annotations, namely the
mask of each mass lesion, are labeled by 3 radiologists with
strong expertise. If there are disagreements among them, we
will adopt the majority opinion of radiologists. This dataset
is randomly split into training, validation and testing sets in
a ratio of 8:1:1.

5.3 Baselines
Faster RCNN, FPN. Faster RCNN [6] with Feature
Pyramid Network (FPN) [40] is a strong baseline in object
detection task. FPN enhances the modeling ability of
detecting multi-scale objects. It assigns objects to different
level of feature maps according to object scales. We use
ResNet-50 [78] as the backbone network.

TABLE 3
Performance on in-house dataset(%).

Method R@0.5 R@1.0 R@2.0 R@3.0 R@4.0
Faster RCNN, FPN 82.3 85.4 90.5 92.5 93.7

Faster RCNN, FPN, DCN 83.1 88.0 91.0 92.5 93.9
Mask RCNN, FPN 83.1 88.0 91.4 93.4 94.2

Mask RCNN, FPN, DCN 84.0 88.3 91.7 93.2 94.5
BG-RCNN [21] 85.7 89.4 92.1 93.7 95.0

AG-RCNN 87.6 90.6 93.4 94.7 95.2

Faster RCNN, FPN, DCN. Deformable Convolution
Network (DCN) [81] is proposed to boost the transformation
modeling capability of convolutional networks. DCN is
introduced into the baselines to further enhance the
detection performance.

Mask RCNN, FPN, DCN. Mask RCNN [17] is a state-
of-the-art approach for both object detection and instance
segmentation tasks. To leverage mask annotations for
precise localization, we exploit Mask RCNN framework for
boosting the performance.

Mask RCNN, FPN, DCN. DCN is further integrated into
the Mask RCNN baselines to improve the performance.

CVR-RCNN. CVR-RCNN [5] models the ipsilateral
relations of mammograms by adding a relation module [3]
into the second stage of detection process.

5.4 Comparison with State-of-the-art Methods
We evaluate the performance by recall (R) at t (t ∈
{0.5, 1.0, 2.0, 3.0, 4.0}) false positive per image (FPI), which
is simplified as R@t. A mass region is recalled when its IOU
(Intersection Over Union) value is larger than 0.2.

Table 1 and Table 2 display the experimental results on
DDSM dataset. Baseline results in Table 1 are cited from
their original papers [5], [21], [74], [75], [76]. In Table 2, we
re-implemented the baseline methods in our experiments.
We do not make a comparison with [8] since their split of
dataset is different. We keep the same FPI and compare with
a strong baseline approach, CVR-RCNN [5]. We can see that
AG-RCNN significantly outperforms all compared meth-
ods. The results on in-house dataset are reported in Table 3.
Although in-house dataset has larger amount of data and
image modalities, our approach consistently outperforms all
comparison methods, which verifies the effectiveness and
robustness of AG-RCNN on the challenging scenario.

MommiNet [41] is an existing work on multi-view mam-
mogram mass detection but with different experimental
settings. Following the same practice of MommiNet, we
randomly divide all cases on the DDSM dataset into the
training, validation, and test sets by approximately 8:1:1,
resulting in 8,256, 1,020 and 1,036 images in the respective
sets. The proposed AG-RCNN outperform MommiNet by
+1.5% (@0.5), +1.8% (@1.0), and +2.3% (@2.0).

To explore how the proposed model benefits from the
correspondence reasoning mechanism, we qualitatively an-
alyze some cases in Figure 4. As shown in the 2nd and 3rd
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TABLE 4
Effectiveness of pseudo landmarks on DDSM and In-house datasets (%).

Method
DDSM In-house

R@0.5 R@1.0 R@2.0 R@3.0 R@4.0 R@0.5 R@1.0 R@2.0 R@3.0 R@4.0
Uniform Grids 77.7 85.6 91.5 93.2 94.5 85.6 89.4 81.9 93.0 94.1

Proposed 82.0 89.0 92.1 93.8 95.5 87.6 90.6 93.4 94.7 95.2

TABLE 5
Effectiveness of node number on DDSM and In-house datasets (%).

Method
DDSM In-house

R@0.5 R@1.0 R@2.0 R@3.0 R@4.0 R@0.5 R@1.0 R@2.0 R@3.0 R@4.0
PL(1, 1) 77.0 84.2 91.4 92.5 93.2 84.5 89.6 92.1 94.2 94.7
PL(9, 13) 80.5 87.1 91.6 93.5 94.5 86.4 90.1 92.6 94.5 95.0
PL(21, 25) 81.1 87.0 91.8 93.2 94.5 87.2 90.0 92.9 94.3 95.0
PL(42, 46) 81.4 87.3 92.0 93.8 95.2 87.1 90.4 93.2 94.9 95.2
PL(66, 71) 82.0 89.0 92.1 93.8 95.5 87.6 90.6 93.4 94.7 95.2

TABLE 6
Effectiveness of graph node mapping on DDSM and In-house datasets (%).

Method
DDSM In-house

R@0.5 R@1.0 R@2.0 R@3.0 R@4.0 R@0.5 R@1.0 R@2.0 R@3.0 R@4.0
PL(21, 25), Crop 78.8 86.3 91.1 92.5 94.2 85.4 88.4 91.4 93.2 94.2
PL(21, 25), k = 1 80.8 86.8 91.4 92.5 94.2 86.2 90.2 92.5 94.5 95.1
PL(21, 25), k = 2 81.1 87.0 91.8 93.2 94.5 87.2 90.0 92.9 94.3 95.0
PL(21, 25), k = 3 80.1 86.3 92.1 93.0 94.2 86.6 90.3 92.8 94.2 94.7
PL(66, 71), Crop 78.4 87.0 92.1 92.5 93.5 86.1 89.0 92.8 93.5 95.0
PL(66, 71), k = 1 80.1 87.0 92.5 93.5 94.9 86.7 90.3 92.9 94.6 95.0
PL(66, 71), k = 2 80.5 87.7 92.5 93.8 95.2 87.2 90.2 93.2 94.2 95.0
PL(66, 71), k = 3 82.0 89.0 92.1 93.8 95.5 87.6 90.6 93.4 94.7 95.2

TABLE 7
Ablation of components in bipartite graph convolutional network on DDSM and in-house datasets (%).

Hg Hs In-house DDSM
R@0.5 R@1.0 R@2.0 R@3.0 R@4.0 R@0.5 R@1.0 R@2.0 R@3.0 R@4.0
76.7 83.9 89.4 91.4 91.8 84.0 88.3 91.7 93.2 94.5√
77.7 86.3 89.4 91.8 93.5 84.7 88.9 92.1 93.4 94.0√
78.4 83.9 91.1 92.1 93.8 85.2 89.2 92.0 93.4 94.2√ √
79.5 86.6 91.8 92.5 94.5 86.2 89.5 92.5 93.6 94.6

TABLE 8
Ablation of components in inception graph convolutional network on DDSM and In-house datasets (%).

Method
DDSM In-house

R@0.5 R@1.0 R@2.0 R@3.0 R@4.0 R@0.5 R@1.0 R@2.0 R@3.0 R@4.0
IGN(1) 78.0 84.5 90.4 92.1 93.8 84.5 89.5 92.4 94.1 94.9
IGN(3) 78.1 86.0 91.0 92.5 93.5 85.0 89.0 92.3 94.2 94.4
IGN(5) 78.4 85.3 91.1 93.2 94.2 85.3 89.1 92.3 94.1 94.7

IGN(1, 3) 78.8 85.8 91.1 93.2 94.2 85.2 89.3 92.4 94.2 94.9
IGN(1, 3, 5) 79.1 86.3 91.4 93.2 94.5 85.6 89.5 92.8 94.4 95.0

TABLE 9
Ablation of modules on DDSM and in-house datasets (%).

BGN IGN
DDSM In-house

R@0.5 R@1.0 R@2.0 R@3.0 R@4.0 R@0.5 R@1.0 R@2.0 R@3.0 R@4.0
84.0 88.3 91.7 93.2 94.5 76.7 83.9 89.4 91.4 91.8√
86.2 89.5 92.5 93.6 94.6 79.5 86.6 91.8 92.5 94.5√
85.6 89.5 92.8 94.4 95.0 79.1 86.3 91.4 93.2 94.5√ √
87.6 90.6 93.4 94.7 95.2 82.0 89.0 92.1 93.8 95.5
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 4. Detection results of AG-RCNN. Each row shows a representative case. Column (a)-(c) refer to the examined view, the flipped contralateral
view and the auxiliary view with annotations. Column (d)-(e) indicate detection results by Mask-RCNN and AG-RCNN. Column (f) visualizes the
attention area on the auxiliary view. Column (g) shows the attention regions of bilateral views. Column (h)-(i) visualize the response maps before
and after correspondence reasoning enhancement.

rows, detecting mass lesions with only a single view is quite
confusing since mass lesions are obscured by compacted
glands in breasts. Leveraging visual cues from different
mammographic views can provide clear and reasonable
evidences for mass detection in the examined view, and thus
make the detection process more efficient and interpretable.
By doing so, the proposed method can significantly improve
the recall. Besides, as shown in 1st row, the localization
of the bounding box becomes more precise, since more
detailed information about the anatomical structure of mass
is taken into consideration.

5.5 Ablation Study

5.5.1 Ablation of Pseudo Landmarks

We compare the proposed pseudo landmarks with uniform
grids, which embeds nodes uniformly into mammogram
images without considering the visual prior knowledge.
The number of nodes is identical between uniform grids
and pseudo landmarks. The results are shown in Table 4,
which clearly demonstrate the superiority of our pseudo
landmarks. We further investigate the effect of the number
of nodes on the performance. “PL(x, y)” in Table 5 denotes
the setting that there are x nodes in CC view and y nodes
in MLO view. The setting “PL(1, 1)” is approximatively
equivalent to two-branch Faster RCNN. The results are
reported in Table 5, we choose “PL(66, 71)” as our final
results.
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5.5.2 Ablation of Graph Node Mapping.

To explore the effectiveness of bipartite node mapping, we
first compare with a simple baseline, which directly crops
a fixed region for graph node representation. Results in
Table 6 verify the superiority of the proposed graph node
mapping. The justifications can be summarized as follows.
First, the graph node mapping endows node representations
with the property that the representative region of each
node is invariant to the variations of image scales and breast
shapes, which enhances the robustness of the node rep-
resentation. Second, the graph node mapping mechanism
is easy-to-implement without any additional parameters,
which simplifies the training process.

We further analyze the relationship between k and the
results. We keep k fixed for both φk and ψk. As shown in
Table 6, when the dense nodes are embedded, the model
performs better with a larger k. The reason is that the dense
nodes have smaller representative regions, and a larger k
can extract richer context features for each node.

5.5.3 Ablation of Bipartite Graph Convolutional Network.

We conduct the ablation study of bipartite graph convolu-
tional network based on ipsilateral views. To analyze the
influence of each component in the bipartite graph convo-
lutional network, we isolate each component (i.e., Hg and
Hs) of bipartite graph edges. We traverse all combinations
of using Hg and Hs. It degenerates to a plain Mask RCNN
when neither Hs nor Hg are used. The justification is that
no information propagates across views and the prediction
is only based on the examined view. When either Hs or Hg

is used, we set H to Hs or Hg respectively, which propa-
gates information across correspondences satisfying seman-
tic constraints or geometric constraints only. The results are
shown Table 7, which reveal two critical observations. First,
compared with the single view based method, utilizing
either Hs or Hg can provide considerable improvements.
Second, by combining semantic and geometric relations, we
can achieve the best performance.

5.5.4 Ablation of Inception Graph Convolutional Network

We conduct the ablation study of inception graph convo-
lutional network based on bilateral views. For simplicity,
“IGN(s1, s2, s3)” denote IGN with the settings of three dif-
ferent branches, i.e., s1, s2, s3. Table 8 reports the experimen-
tal results, which demonstrates the following conclusions.
First, equipping the model with the tolerance of geometric
distortions will enhance the performance. Second, adopting
multi-branch information propagation among top-s nearest
nodes achieves the best performance.

5.5.5 Ablation of Modularities

We evaluate all combinations of BGN and IGN. The model
degenerates to a plain Mask RCNN if neither BGN nor IGN
are used, since the detection is only based on the examined
view without multi-view information propagation. When
using BGN only, the enhanced feature Y is reformulated
as:

Y = [Fe, FB ]WT
f . (23)

While using IGN, the enhanced feature Y with parameter
Wf ∈ RC×C can be reformulated as:

Y = (F̂I · Fe)W
T
f . (24)

The results are summarized in Table 9, which demonstrate
that the performance gain benefits from both BGN and IGN.

5.6 Visualization
Our visualization experiments mainly answer three ques-
tions: (1) Where does the bipartite graph focus on auxiliary
view? (2) Where does inception graph convolutional net-
work focus on bilateral views? (3) How does the correspon-
dence reasoning mechanism enhance the feature represen-
tations?

Firstly, we develop a specialized method for correspon-
dence visualization to answer the first question. The major
objective is to seek the representative regions of correlated
nodes in the auxiliary view when given a query mass in the
examined view. We define a one-hot representative vector
x ∈ R|VCC∪VMLO| to denote the locations of the query
masses in the examined area. The index of the node, which is
nearest to the center of the analyzed mass in the examined
view, is set to 1. We visualize the feature via Equation 25,
where o ∈ RHW stands for the response vector, and [·]e
represents indexing operator which selects nodes in the
examined view from bipartite graph node set. We reshape
and normalize the response vector o to the output image.

o = Qr[HBx]e (25)

As can be seen in Figure 4 (f), we found that the bipartite
graph focuses on the matched mass area in the auxiliary
view, which is helpful for learning complementary feature
representations. In addition, the proposed model has a clear
physical meaning and provides visual cues of matched
masses. Therefore, it is capable of assisting radiologists in
clinical mammography interpretation.

Secondly, we visualize the attention regions learned by
the inception graph convolutional network. Since there ex-
ists a natural spatial attention map F̂I , we simply normalize
it and obtain the visualization map. As illustrated in Figure
4 (g), attention regions mostly appear at asymmetric areas
in bilateral views, which provides positive evidence of the
regions to be mass lesions.

Lastly, to investigate how correspondence reasoning
mechanism enhances the feature representations, we com-
pare the response map before and after feature enhance-
ment. To be specific, we respectively conduct channel-wise
max pooling on Fe and Y . The results are shown in Figure
4. We can observe that feature response map activates more
prominently on the mass region after enhancement. By do-
ing so, the corresponding reasoning enhancement method
helps to promote the detection performance and make a
sufficient and comprehensive clinical decision.

6 CONCLUSION

In this paper, we delve into the multi-view correspondence
reasoning problem and introduce a anatomy-aware graph
convolutional network to endow the mammogram mass
detection models with customized reasoning ability. By
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jointly reasoning and distilling information from multiple
mammography views, our model substantially enhances
the expressive power of learned representations in the ex-
amined view during the detection process. The proposed
model includes a bipartite graph convolutional network
and an inception graph convolutional network. The former
one is capable of performing reasoning about ipsilateral
correspondences and modeling both geometric constraints
and visual similarities across ipsilateral views, and the latter
one can model the structural similarities between bilateral
views. To this end, correspondence reasoning enhancement
propagates information through both graphs, which makes
the spatial visual features aware of the multi-view corre-
spondences. Extensive experiments on both public and in-
house datasets reveal that the proposed model significantly
exceeds the state-of-the-art performance. In addition, visu-
alization results show that AGN provides reasonable and
interpretable visual cues for the clinical diagnosis.
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